# Selective Dimerization of Diisobutylene by Oxo Acids: Synthesis of Isobutylene Tetramer

HIROSHI HASEGAWA and TOSHINOBU HIGASHIMURA, Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan

#### **Synopsis**

Isobutylene tetramers (IB<sub>4</sub>) were obtained in high yield by the cationic dimerization of commercial diisobutylene (DIB) (2,4,4-trimethyl-1-pentene with isomeric impurities) with CF<sub>3</sub>SO<sub>3</sub>H or CH<sub>3</sub>COClO<sub>4</sub> as catalyst. The best IB<sub>4</sub> yields (80–90%) were achieved at 0–30°C in nonpolar solvents (*n*-hexane and CCl<sub>4</sub>). The major components in the IB<sub>4</sub> produced under these conditions were 2,2,6,6,8,8-hexamethyl-4-methylenenonane (8) and 2,2,4,6,6,8,8-heptamethyl-4-nonene (9) that arose via simple linear dimerization of DIB. The yield of IB<sub>4</sub> was almost independent of the monomer concentration ranging from 10 to 50 vol % at 0°C, but decreased at higher temperatures ( $\geq$ 50°C) or in a polar solvent [(CH<sub>2</sub>Cl)<sub>2</sub>] because of the formation of higher oligomers and side reactions such as cracking. A Lewis acid catalyst (AlEtCl<sub>2</sub>) resulted in a very complex mixture of C<sub>12</sub>-C<sub>20</sub> hydrocarbons at 0°C in CCl<sub>4</sub>; the yield of IB<sub>4</sub> was less than 40%. The catalytic difference between oxo acids and metal halides is discussed.

# INTRODUCTION

The selective synthesis of trimers (IB<sub>3</sub>) or tetramers (IB<sub>4</sub>) of isobutylene is industrially interesting because these oligomers are useful as solvents or additives. Although mixtures of IB<sub>3</sub> and IB<sub>4</sub> can be obtained by the cationic oligomerization of isobutylene by sulfuric acid<sup>1</sup> and ion exchange resin,<sup>2</sup> it has been difficult to prepare IB<sub>3</sub> or IB<sub>4</sub> selectively in high yield.

Another approach to the synthesis of IB<sub>4</sub> may be dimerization of diisobutylene (DIB), which can propagate no further than the dimer stage because of steric hindrance. In the presence of a Lewis acid (AlCl<sub>3</sub>, etc.), however, DIB undergoes not only dimerization but side reactions such as cracking and isomerization.<sup>3</sup> These side reactions have rendered cationic DIB dimerization complicated and nonselective.<sup>3</sup> On the other hand, using pure DIB in conjunction with weaker Lewis acids (AlR<sub>2</sub>Cl or AlR<sub>3</sub>, R = CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>), Kennedy and Rengachary have obtained DIB dimers (isomeric mixtures of IB<sub>4</sub>) in high yield at low temperatures below  $-30^{\circ}$ C.<sup>3</sup> Kennedy's work is mostly focused on model studies of the transfer and termination in isobutylene polymerization by Lewis acids.

In the course of our oligomerization studies with oxo acid catalysts (oxygencontaining protonic acids and their derivatives),<sup>4</sup> we have been interested in the practical aspects of DIB dimerization. DIB is industrially supplied as a mixture of 2,4,4-trimethyl-1-pentene, and several other C<sub>8</sub> alkenes (see Fig. 1). The main object of this study is to prepare IB<sub>4</sub> selectively from such commercial DIB (containing isomeric impurities) with oxo-acid catalysts (e.g., CF<sub>3</sub>SO<sub>3</sub>H). These catalysts are known to be particularly effective for selective linear dimerization as demonstrated with styrene and related monomers.<sup>4</sup> The DIB dimerization was carried out at relatively high temperature (0–70°C) to achieve industrially attractive processes.

Journal of Applied Polymer Science, Vol. 27, 171–181 (1982) © 1982 John Wiley & Sons, Inc. CCC 0021-8995/82/010171-11\$01.10

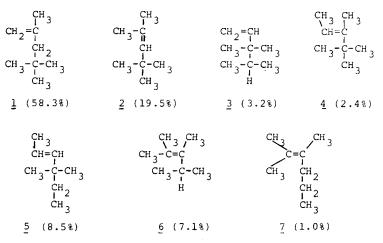



Fig. 1. Composition of the starting material used in this work.

# **EXPERIMENTAL**

## Materials

Commercial DIB mixture was distilled over CaH<sub>2</sub>. Gas-mass spectroscopic analysis showed that the DIB consisted of 2,4,4-trimethyl-1-pentene (1, 58.3%), 2,4,4-trimethyl-2-pentene (2, 19.5%), and minor C<sub>8</sub> alkenes (3-7) [Figs. 1 and 2(a)]; saturated hydrocarbons and other impurities were not detected. Commercial 1 and 2 (Wako Chemicals Co., purity  $\geq$ 99%) were distilled over CaH<sub>2</sub>.

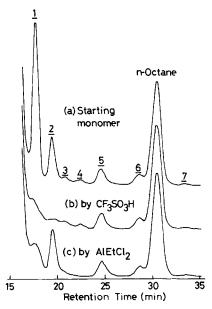



Fig. 2. Gas chromatograms for the starting material (a) and the residual monomers (b, c) recovered after 24 h in the reactions by  $CF_3SO_3H$  and  $AlEtCl_2$  in  $CCl_4$  at 0°C ( $[M]_0 = 10 \text{ vol }\%$ ,  $[C]_0 = 10 \text{ mM}$ ). Numbers on the peaks indicate the monomers shown in Figure 1.

The distillate was used as monomer without further fractionation. Solvents were washed with aqueous acid and/or alkali solutions and distilled at least twice over CaH<sub>2</sub> before use. Commercial CF<sub>3</sub>SO<sub>3</sub>H (Sumitomo 3M Co., purity  $\geq$ 98%) and AlEtCl<sub>2</sub> (Wako Chemicals Co., purity  $\geq$ 98%) were used without further purification. CH<sub>3</sub>COClO<sub>4</sub>,<sup>5</sup> *p*-toluenesulfonic acid,<sup>6</sup> and poly(styrenesulfonic acid) (Amberlyst 15)<sup>6</sup> were obtained, as described elsewhere.

# Procedures

Oligomerization was carried out in an Erlenmeyer flask equipped with a three-way cock under a dry nitrogen atmosphere. The reaction was initiated by addition of a catalyst solution into a monomer solution. In this procedure the concentration of water in the reaction mixture was less than 0.3 mM (by the Karl-Fischer titration). After a certain interval the reaction was stopped by addition of methanol containing a small amount of aqueous ammonia. The extent of monomer consumption was determined by gas chromatography (GC) (column: Silicon DC 550, 5 m  $\times$  3 mm id; oven temperature 80°C; *n*-octane as internal standard).

The molecular weight distribution (MWD) was measured by high performance liquid chromatography (HLC) for higher oligomers ( $\geq IB_4$ ) and by GC for lower oligomers ( $\leq IB_4$ ) under the following conditions: HLC, JASCO TRIROTAR chromatograph; JSP-101 polystyrene gel column, 500 mm × 21.5 mm id; chloroform solution, refractive index detector; GC, Silicone SE-30 column, 2 m × 3 mm id; oven temperature, 120°C. The MWD was determined also by fractionation using the same HLC instrument. At the outlet of the column, fractions (0.75 mL each) of eluate were collected in small vials, and after evaporation of volatiles in vacuo, the weight of oligomers in each fraction was measured. <sup>13</sup>C= and <sup>1</sup>H=NMR spectra were measured on a JEDL-FX90Q spectrometer in CDCl<sub>3</sub> solution. GC-mass spectra were obtained on a JEOL JMS-D300 spectrometer (ionization volt, 70 eV; ionization current, 300  $\mu$ A; ion multiplier, 1.10 kV; column, Silicon SE-30, 2 m × 3 mm id). IR spectra were measured on a Shimadzu IR-117 spectrometer.

### **RESULTS AND DISCUSSION**

#### **Time Course of DIB Oligomerization**

The DIB containing several  $C_8$  alkenes (Fig. 1) was oligomerized with an oxo acid (CF<sub>3</sub>SO<sub>3</sub>H) and a Lewis acid (AlEtCl<sub>2</sub>) in CCl<sub>4</sub> solvent at 0°C. Figure 2 shows the gas chromatograms of the residual monomers recovered after 24 h. With CF<sub>3</sub>SO<sub>3</sub>H catalyst, 1 and 2 disappeared rapidly but 3–7 remained unreacted. The rates of consumption of 1 and 2 were almost the same (ca. 90% in 1 h under the conditions shown in Fig. 2). With AlEtCl<sub>2</sub>, on the other hand, 1 was oligomerized whereas 2 was scarcely consumed; 3 and 4, minor components in the starting monomer mixture, also reacted. This catalytic difference between CF<sub>3</sub>SO<sub>3</sub>H and AlEtCl<sub>2</sub> will be discussed later.

### **Molecular Weight Distribution of the Products**

# Effect of Catalysts

Figure 3 shows the MWDs of the products obtained by  $CF_3SO_3H$  and  $AlEtCl_2$ in  $CCl_4$  solvent at 0°C ( $[M]_0 = 10 \text{ vol }\%$ ). The full lines indicate the MWDs determined by HLC with a refractive index detector; the histograms in broken line show the MWDs obtained by fractionation (see Experimental). The numbers on the peaks indicate the degree of polymerization based on the isobutylene unit (e.g., n = 4 for IB<sub>4</sub>). The MWDs measured by the two methods were in good agreement in the molecular weight region higher than ~200 ( $n \ge 4$ ). However, the MWD in the lower molecular weight region ( $\le IB_3$ ) was difficult to evaluate accurately by both methods because (i) refractive indices of oligomers in this region depend strongly on the degree of polymerization as examplified by the negative peak at elution volume 90 mL (corresponding to IB<sub>3</sub>) and (ii) these lower oligomers were too volatile to be isolate quantitatively for gravimetric analysis in the fractionation. Therefore, the lower oligomers were analyzed by GC=MS spectroscopy (Fig. 4).

In the oligomerization with  $CF_3SO_3H$ ,  $IB_4$  was produced in high yield ( $\geq 85\%$ ) with a small amount of higher oligomers, as shown in Figure 3(a). A trace amount of  $C_{12}$  and  $C_{13}$  hydrocarbons (less than 4%) was also detected by GC==MS analysis [Fig. 4(a)]. Figure 4(a) further shows that the IB<sub>4</sub> ( $C_{16}$ ) consists of six isomers.

AlEtCl<sub>2</sub> catalyst gave a product with a broad MWD [Fig. 3(b)]. The yield of IB<sub>4</sub> ca. 40% and much smaller than that obtained by CF<sub>3</sub>SO<sub>3</sub>H. GC=MS analysis revealed the presence of hydrocarbons having all carbon numbers from 12 to 20 [Fig. 4(b)]. The formation of C<sub>12</sub> and C<sub>20</sub> hydrocarbons, probably IB<sub>3</sub> and IB<sub>5</sub>, respectively, may be explained in terms of the depolymerization of DIB to isobutylene. In addition, the broad MWD extending in the C<sub>12</sub>-C<sub>20</sub> region indicates extensive side reaction such as cracking of DIB or its oligomers.

In the oxo-acid-catalyzed oligomerization in a nonpolar solvent, the propagating carbocation should be a nondissociated tight ion pair with a nucleophilic

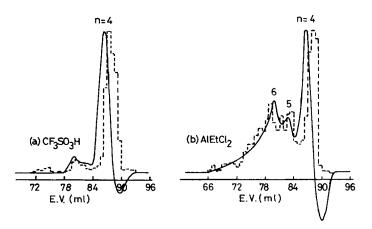



Fig. 3. MWD of DIB oligomers obtained by  $CF_3SO_3H$  (a) and  $AlEtCl_2$  (b) under the condition of Figure 2. (---) Determined by HLC with a refractive index detector; (---) by fractionation (see Experimental).

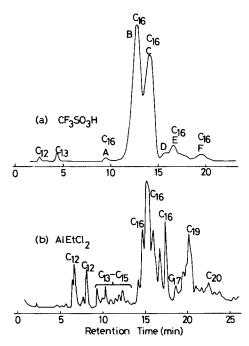



Fig. 4. GC—MS analysis of lower oligomers of DIB obtained by  $CF_3SO_3H$  (a) and  $AlEtCl_2$  (b). As to the reaction conditions, see Figure 2.

oxo-acid counteranion.<sup>4</sup> Therefore, addition of monomer to the carbocation (propagation) is suppressed and  $\beta$ -proton elimination (chain transfer) is in turn promoted to form DIB dimer (IB<sub>4</sub>) in high yield.

Oligomerizations of DIB catalyzed by oxo acids other than  $CF_3SO_3H$  were also investigated in  $CCl_4$  at 0°C. The yields of IB<sub>4</sub> with three catalysts were as follows:  $CH_3COClO_4$ , ~70%; poly(sytrenesulfonic acid) (Amberlyst 15), ~50%; *p*-toluenesulfonic acid, none (no reaction). The solid polymeric oxo acid (Amberlyst 15) yielded IB<sub>4</sub> and higher oligomers only; IB<sub>3</sub> was not produced. Thus  $CF_3SO_3H$ , giving >85% yield of IB<sub>4</sub> under the same conditions, is the most effective oxo acid for the synthesis of IB<sub>4</sub>.

# Effect of Reaction Conditions in the Dimerization by $CF_3SO_3H$

The MWDs of the products obtained with  $CF_3SO_3H$  under various conditions are shown in Figure 5 (measured by HLC with a refractive index detector). Table I lists the  $IB_3/IB_4$  ratios determined by GC.

In nonpolar solvents such as *n*-hexane and CCl<sub>4</sub>, IB<sub>4</sub> was obtained predominantly ( $\geq$ 85%) and IB<sub>3</sub> was scarcely formed (Table I). Higher oligomers and IB<sub>3</sub> increased in the products obtained in a polar solvent [(CH<sub>2</sub>Cl)<sub>2</sub>]. The yield of IB<sub>4</sub> was almost independent of the initial monomer concentrations ([M]<sub>0</sub>) in the range of 10–50 vol% in CCl<sub>4</sub> at 0°C. On the other hand, reaction temperature greatly affected the composition of the products, especially the IB<sub>3</sub>/IB<sub>4</sub> ratios. The contents of IB<sub>3</sub> and higher oligomers increased at higher temperatures.

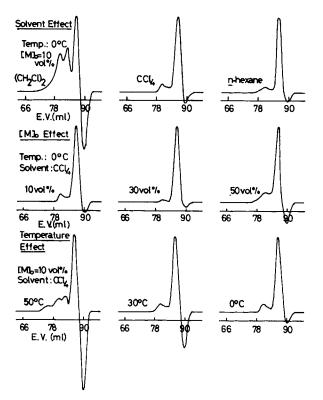
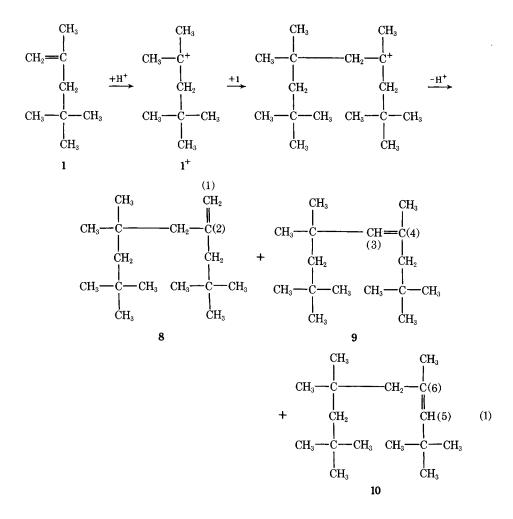



Fig. 5. Effect of reaction conditions on the MWD of products obtained by  $CF_3SO_3H$ . The MWD was determined by HLC with refractive index detection.

These results show that  $IB_4$  can be conveniently prepared in high yield with  $CF_3SO_3H$  catalyst in nonpolar solvents at temperatures between 0°C to 30°C.

|                  | Solvent            | Temperature<br>(°C) | [M] <sub>0</sub><br>(vol %) | IB <sub>3</sub> /IB <sub>4</sub> ª |
|------------------|--------------------|---------------------|-----------------------------|------------------------------------|
|                  | ( CCl <sub>4</sub> | 0                   | 10                          | 0.042                              |
| Solvent          | <i>n</i> -hexane   | 0                   | 10                          | 0.007                              |
| effect           | $(CH_2Cl)_2$       | 0                   | 10                          | 0.880                              |
|                  | CCl <sub>4</sub>   | 0                   | 10                          | 0.042                              |
| [M] <sub>0</sub> | { CCl <sub>4</sub> | 0                   | 30                          | $\sim 0^{\text{b}}$                |
| effect           | CCl4               | 0                   | 50                          | 0.069                              |
|                  | CCl4               | -20                 | 10                          | 0                                  |
|                  | CCl₄               | 0                   | 10                          | 0.042                              |
| Temperature      | $CCl_4$            | 30                  | 10                          | 0.048                              |
| effect           | $CCl_4$            | 50                  | 10                          | 0.419                              |
|                  | CCl4               | 70                  | 10                          | 0.760                              |


TABLE I IB<sub>3</sub>/IB<sub>4</sub> Ratios for DIB Oligomers Produced by  $CF_3SO_3H$  under Various Reaction Conditions ( $[CF_3SO_3H]_0 = 10 \text{ mM}$ )

<sup>a</sup> Measured by GC.

 $^{\rm b}$  A trace amount of  $IB_3$  was detected.

#### Structure of IB<sub>4</sub>

IB<sub>4</sub> was isolated from the products by preparative HLC for structural analysis by <sup>1</sup>H= and <sup>13</sup>C-NMR, IR, and GC=MS spectroscopy. If DIB (1) dimerizes without any side reactions, three unsaturated IB<sub>4</sub>, 8–10, will be formed by proton elimination from the IB<sub>4</sub> cation as shown in eq. (1) (geometric isomers were omitted for simplicity):



Although the starting materials contained the seven hydrocarbons (Fig. 1), only the dimerization of 1 [eq. (1)] was considered in our structural analysis for the following reasons: (i) The major component 1 reacted almost quantitatively under our reaction conditions; (ii) 2 was found, as described later, to isomerize to 1 prior to propagation in the presence of  $CF_3SO_3H$ ; (iii) the minor components, 3–7, did not oligomerize with  $CF_3SO_3H$ ; and (iv) even in the reaction catalyzed by  $AlEtCl_2$ , in which 3 and 4 were consumed, their oligomers should be of very minor importance in the total product.

# Structure of $IB_4$ Obtained by $CF_3SO_3H$

As shown in Figure 4, the  $IB_4$  fraction produced by  $CF_3SO_3H$  in  $CCl_4$  at 0°C was composed of several isomers, two of which, B and C, comprised more than 90%.

Figure 6 shows the <sup>13</sup>C—NMR spectrum of this IB<sub>4</sub> fraction. Four olefinic resonances were observed between  $\delta$  116 and 145 ppm. In the off-resonance experiments, the signal at 116 ppm split into triplet and the one at 139 ppm into doublet; the other two, at 130 and 145 ppm remained singlet. These results indicate that the IB<sub>4</sub> fraction contains two olefinic groups, CH<sub>2</sub>=C $\leq$  and -CH=C $\leq$ . The IR spectra showed an absorption at 890 cm<sup>-1</sup> due to a vinylidene group and the <sup>1</sup>H—NMR spectra also showed signals at  $\delta$  4.85 (CH<sub>2</sub>=C $\leq$ ) and 5.2 ppm (—CH=C $\leq$ ). The <sup>1</sup>H=NMR and IR data agreed with those observed by Kennedy and Rengachary<sup>3</sup> for IB<sub>4</sub> obtained with R<sub>2</sub>AlCl catalyst at low temperature.

The <sup>13</sup>C chemical shifts of the olefinic carbons in 8–10 calculated by the method of Roberts<sup>7</sup> were compared with the observed values in Table II. The signals at  $\delta$ =115 and 145 ppm were assigned to carbons 1 and 2 of 8 on the basis of the good agreement between the calculated and observed values. The calculated chemical shifts for C-3 and C-4 of 9 seem to be close to the observed values, but the assignment is not conclusive because similar calculated values were obtained for isomer 10.

The compounds B and C in Figure 4(a) were further analyzed by GC=MS spectroscopy. Table III summarizes the M/e values of some characteristic fragments. B and C gave completely different fragment patterns. Table III also shows fragments expected for 8-10 when fragmentation occurs at the allylic position of each olefinic double bond<sup>8</sup> (see Footnote b, Table III). Comparison of the observed fragments with the hypothetical ones indicates that B can be assigned to 9 and C to 8.

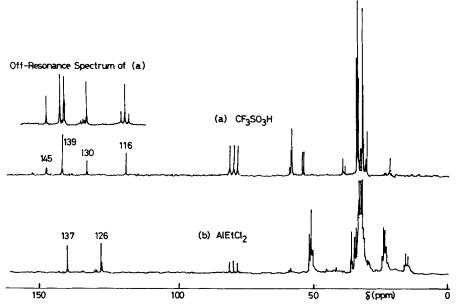



Fig. 6. <sup>13</sup>C=NMR spectra of IB<sub>4</sub> produced by  $CF_3SO_3H$  (a) and  $AlEtCl_2$  (b). As to the reaction conditions, see Figure 2.

|           |                     | Chemical shift (δ, ppm) |       | Peak multiplicity      |  |
|-----------|---------------------|-------------------------|-------|------------------------|--|
| Compounda | Carbon <sup>a</sup> | Calcd                   | Obd.  | (off-resonance coupled |  |
| 8         | <b>(</b> 1          | 115.4                   | 116.0 | triplet                |  |
|           | <b>1</b> 2          | 145.1                   | 145.0 | singlet                |  |
| 9         | (3                  | 142.3                   | 139.1 | doublet                |  |
|           | {4                  | 129.8                   | 130.3 | singlet                |  |
| 10        | (5                  | 143.8                   | b     | b                      |  |
|           | 16                  | 128.0                   | b     | b                      |  |

TABLE II <sup>13</sup>C Chemical Shifts of Olefinic Carbons for IB<sub>4</sub> Isomers

<sup>a</sup> See eq. (1).

<sup>b</sup> Not observed.

From the results mentioned above, it was concluded that the  $IB_4$  produced by  $CF_3SO_3H$  consists mainly of 8 and 9. The ratio of 8/9 was 9/11 according to the GC trace given in Figure 4.

| Mass Spectra of the IB <sub>4</sub> Produced by CF <sub>3</sub> SO <sub>3</sub> H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                                                               |                                                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| Product                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | M/e (fragment)                                                                                                                                |                                                                                                                    |  |  |  |
| Observed <sup>a</sup>                                                             | { B<br>C<br>( 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 224(M <sup>+</sup> )<br>224(M <sup>+</sup> )<br>224(M <sup>+</sup> ) | $168(M^{+} - C_{4}H_{9} + 1)$<br>$168(M^{+} - C_{4}H_{9} + 1)$<br>168                                                                         | $153(M^+ - C_5H_{11})$<br>111(M^+ - C_8H_{17})<br>113, 111                                                         |  |  |  |
| Expected <sup>b</sup>                                                             | { 9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 224(M+)<br>224(M+)                                                   | 168<br>209                                                                                                                                    | 153<br>111                                                                                                         |  |  |  |
| • 11<br>CH <sub>3</sub><br>CH <sub>3</sub> —C—<br> <br>CH <sub>2</sub>            | $- CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 $ | $H_2$<br>$H_2$ 167                                                   | $\begin{array}{c} CH_{3} \\   \\ 153 CH_{3} - C - \\ \\ CH_{2} \\ CH_{3} - C - CH_{3} \\   \\ CH_{3} - C - CH_{3} \\   \\ CH_{3} \end{array}$ | $\begin{array}{c} CH_{3} \\   \\CH = C \\   \\ CH_{2} \\ 167 \\ \\ CH_{3} - C - CH_{3} \\   \\ CH_{3} \end{array}$ |  |  |  |
| 8                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 9                                                                                                                                             |                                                                                                                    |  |  |  |
|                                                                                   | CH₃−<br>CH₃−                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113 1<br>CH <sub>3</sub>  <br>-C                                     | $\begin{array}{c} CH_{3} \\ -CH_{2} - C \\ \\ CH \\ CH_{3} - C - CH_{3} \\ -CH_{3} - C - CH_{3} \\ -CH_{3} \end{array}$                       | -                                                                                                                  |  |  |  |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 10                                                                                                                                            |                                                                                                                    |  |  |  |

TABLE III Mass Spectra of the IB4 Produced by CF3SO3

# Monomer Isomerization of 2 to 1 Catalyzed by CF<sub>3</sub>SO<sub>3</sub>H

Alkene 2 in the DIB mixture was consumed in the reaction catalyzed by  $CF_3SO_3H$ , whereas it remained intact in the presence of  $AlEtCl_2$ . To clarify this difference, oligomerizations of pure 1 and 2 by these two catalysts were carried out in  $CCl_4$  at 0°C. Pure 1 gave its oligomers with both  $CF_3SO_3H$  and  $AlEtCl_2$  catalysts.

With  $CF_3SO_3H$ , pure 2 was rapidly consumed in a few minutes (the full line in Fig. 7). However, GC analysis of the reaction mixture revealed concurrent quantitative formation of isomer 1; i.e., the rapid consumption of 2 is due to its isomerization to 1 promoted by  $CF_3SO_3H$ . The isomerized monomer 1 was then converted into an oligomeric product (the dashed line in Fig. 7). The <sup>13</sup>C=-NMR spectrum of this product agreeded with that of the oligomers produced from pure 1. It is well known that 1<sup>+</sup> formed by dehydration of 2,4,4-trimethylpentan-2-ol yields 1 in high yield.<sup>9</sup> Further, the oligomerization of unstable olefins by an oxo acid often involves isomerization of the monomer to a more stable olefin prior to propagation.<sup>10</sup> Therefore, we concluded that 2 undergoes "monomer-isomerization" oligomerization<sup>10</sup> [eq. (2)] in the presence of  $CF_3SO_3H$ :

$$2 \xrightarrow{+H^+} 1^+ \xrightarrow{-H^+} 1 \xrightarrow{+1} 8 + 9 \tag{2}$$

 $AlEtCl_2$  did not oligomerize and isomerize pure 2. This result is good agreement with our observation that  $AlEtCl_2$  is incapable of inducing monomer isomerization of unstable olefins.<sup>10</sup>

# Structure of $IB_4$ Produced by $AlEtCl_2$

Figure 4(b) shows the formation of at least seven  $C_{16}$  hydrocarbons with Al-EtCl<sub>2</sub> catalyst. The <sup>13</sup>C—NMR spectrum of the  $C_{16}$  (IB<sub>4</sub>) fraction exhibited two olefinic resonances [Fig. 6(b)] whose chemical shifts ( $\delta$  126 and 137 ppm) were completely different from those for the IB<sub>4</sub> produced by CF<sub>3</sub>SO<sub>3</sub>H. The two signals remained singlet on off-resonance coupling. This suggests that the IB<sub>4</sub> produced by AlEtCl<sub>2</sub> is a mixture of tetra-substituted olefins. The GC—MS spectra gave a very complex fragment pattern, indicating that the product is a complicated mixture. Further studies are required to clarify the reaction pathway with AlEtCl<sub>2</sub> catalyst.

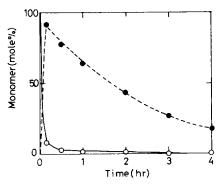



Fig. 7. Time course of the oligomerization of 2 (2,4,4-trimethyl-2-pentene) catalyzed by  $CF_3SO_3H$  in  $CCl_4$  at 0°C ( $[M]_0 = 10 \text{ vol }\%$ ,  $[C]_0 = 10 \text{ mM}$ ). (--0-) Consumption of 2; (--- $\bullet$ ---) concurrent formation of 1.

# CONCLUSIONS

This work has shown that commercial DIB containing isomeric impurities can be dimerized with  $CF_3SO_3H$  and other oxo-acid catalysts near room temperature to give isobutylene tetramers in high yield. The major products are unsaturated  $C_{16}$  hydrocarbons (two kinds) formed via simple linear dimerization of DIB.

# References

1. L. Schmerling and V. N. Ipatieff, Advances in Catalysis and Related Subjects, Vol. II, Academic, New York, 1950, p. 21.

2. W. O. Haag, Chem. Eng. Prog., 63, 145 (1967).

3. J. P. Kennedy and S. Rengachary, Adv. Polym. Sci., 14, 1 (1974).

4. M. Sawamoto, T. Masuda, H. Nishii, and T. Higashimura, J. Polym. Sci., Polym. Lett. Ed.,

13, 279 (1975); T. Higashimura and H. Nishii, J. Polym. Sci., Polym. Chem. Ed., 15, 329 (1977); T. Higashimura, M. Hiza, and H. Hasegawa, Macromolecules, 12, 217 (1979).

5. T. Masuda and T. Higashimura, J. Macromol. Sci., Chem., A5, 547 (1971).

6. H. Hasegawa and T. Higashimura, J. Polym. Sci., Polym. Chem. Ed., 18, 611 (1980).

7. D. E. Dorman, M. Jautelat, and J. D. Roberts, J. Org. Chem., 36, 2757 (1971).

8. R. M. Silverstein, G. C. Bassler, and T. C. Marrill, Spectrometric Identification of Organic Compounds, 3rd ed., Wiley, New York, 1974.

9. F. C. Whitmore, C. S. Rowland, S. N. Wrenm, and G. W. Kilmer, J. Am. Chem. Soc., 64, 2970 (1942).

10. T. Higashimura and H. Hasegawa, J. Polym. Sci., Polym. Chem. Ed., 17, 59 (1979); T. Higashimura, T. Sagane, and H. Hasegawa, Polym. J., 13, 487 (1981).

Received April 27, 1981 Accepted June 15, 1981